Feature Selection via Concave Minimization and Support Vector Machines
نویسندگان
چکیده
Computational comparison is made between two feature selection approaches for nding a separating plane that discriminates between two point sets in an n-dimensional feature space that utilizes as few of the n features (dimensions) as possible. In the concave minimization approach [19, 5] a separating plane is generated by minimizing a weighted sum of distances of misclassi ed points to two parallel planes that bound the sets and which determine the separating plane midway between them. Furthermore, the number of dimensions of the space used to determine the plane is minimized. In the support vector machine approach [27, 7, 1, 10, 24, 28], in addition to minimizing the weighted sum of distances of misclassi ed points to the bounding planes, we also maximize the distance between the two bounding planes that generate the separating plane. Computational results show that feature suppression is an indirect consequence of the support vector machine approach when an appropriate norm is used. Numerical tests on 6 public data sets show that classi ers trained by the concave minimization approach and those trained by a support vector machine have comparable 10fold cross-validation correctness. However, in all data sets tested, the classi ers obtained by the concave minimization approach selected fewer problem features than those trained by a support vector machine.
منابع مشابه
Mental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals
Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...
متن کاملSeparating Well Log Data to Train Support Vector Machines for Lithology Prediction in a Heterogeneous Carbonate Reservoir
The prediction of lithology is necessary in all areas of petroleum engineering. This means that to design a project in any branch of petroleum engineering, the lithology must be well known. Support vector machines (SVM’s) use an analytical approach to classification based on statistical learning theory, the principles of structural risk minimization, and empirical risk minimization. In this res...
متن کاملPrimal-Dual Framework for Feature Selection using Least Squares Support Vector Machines
Least Squares Support Vector Machines (LSSVM) perform classification using L2-norm on the weight vector and a squared loss function with linear constraints. The major advantage over classical L2-norm support vector machine (SVM) is that it solves a system of linear equations rather than solving a quadratic programming problem. The L2norm penalty on the weight vectors is known to robustly select...
متن کاملAnomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors
Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...
متن کاملFeature Selection Using Multi Objective Genetic Algorithm with Support Vector Machine
Different approaches have been proposed for feature selection to obtain suitable features subset among all features. These methods search feature space for feature subsets which satisfies some criteria or optimizes several objective functions. The objective functions are divided into two main groups: filter and wrapper methods. In filter methods, features subsets are selected due to some measu...
متن کامل